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ABSTRACT 

 In the current work, the CAD model of 3d printer extruder has 

been developed by using CREO 5.0. The model has been 

simulated using ANSYS software on fluent domain 15.0 

workbench in order to observe various parameters effecting the 

temperature, pressure, wall shear stress of 3d printing extruder 

filament. Six types of configurations of extruder model have been 

used nozzle angle of 30, 60, 45, and 50 degree (validation) with 

nozzle diameter 0.1, 0.3 and 0.2mm (validation). An optimized 

model of 3d printer extruder has been developed as stated 

configurations of extruder model. The simulations have been 

performed at a different heat load i.e. 10, 20, 30 and 40W that is 

the heat load of heat source in extruder inbuilt inside it. The 

simulation of the optimized model gives lower value of wall shear 

stress, it is predicted that nozzle angle with 60 degree with nozzle 

diameter of 0.1mm exhibits minimum pressure and wall shear 

stress as compared to other optimized model of 3d printer 

extruder. The results are validated with reported existing 

experimental data. 

Keywords – 3D printer extruder, temperature, wall shear stress, 

pressure, bisphenol – a. 

 

I. Introduction 

3D printing, then additive manufacturing, is the 

construction regarding a three-dimensional target beside a 

CAD mannequin then a digital 3D model.[1] The term "3D 

printing" do refer in accordance with a variety on methods 

within as material is deposited, certain or solidified under pc 

power in accordance with beget a 3-dimensional object,[2] 

together with fabric existence added together (such as 

plastics, beverages yet lime grains life fused together), 

usually bed by using layer. 

                                                                            In the 1980s, 

3D printing strategies have been considered suitable only 

because of the manufacturing regarding purposeful yet 

aesthetic prototypes, and a greater fabulous term because it 

at the period was fast prototyping.[3] As on 2019, the 

precision, repeatability, then cloth spread over 3D press 

have extended in conformity with the point that some 3D 

press methods are regarded possible so an industrial-

production technology, whereby the time period  

 

 

additive manufacturing execute lie old synonymously with 

3D printing.[4] One regarding the authorization benefits of 

3D stamp is the capability in accordance with origin 

altogether complex shapes then geometries to that amount 

would remain otherwise not possible to construct with the 

aid of hand, such as hole components then parts together 

with inward fascicule structures according to decrease 

weight. Fused deposition modeling (FDM), as utilizes a 

non-stop filament concerning a thermoplastic material, is 

the near common 3D press process of usage as like of 2020. 

[5] 

 

Figure – 3D printer extruder 

RESEARCH METHODOLOGY 

The Procedure for Solving the Problem  

 Create the geometry. 

 Meshing of the domain. 

 Set the material properties and boundary 

conditions. 

 Fluent solver. 

 Obtaining the solution. 

http://www.jetir.org/
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Preparation of the CAD models 

 

Figure: model of extruder (Validation) 

 

 
Figure: model of extruder (60 degree nozzle angle) 

 

Figure: model of extruder (45 degree nozzle angle) 

 
Figure: model of extruder (30 degree nozzle angle) 

 

 

Figure: model of extruder (0.3mm nozzle diameter) 

 

Figure: model of extruder (0.1mm nozzle diameter) 

 

 

 

 

RESULTS 

Validation result of extruder model 

Validation result obtained from numerical simulation. 

Nozzle angle 50 degree (Validation) 

Heat (W) 

Temperature 

(degrees), Nozzle 

angle 50 degree 

(Validation) 

Wall shear 

stress, Nozzle 

angle 50 degree 

(Validation) 

Pressure (Pa), 

Nozzle angle 50 

degree 

(Validation) 

10 150.88 1.00E+04 5000 

20 250.63 1.20E+04 6600 

30 273.44 1.60E+04 7600 

40 328.96 1.80E+05 8600 

 

Simulation result obtained for extruder model of validation 

parameter 

http://www.jetir.org/


© 2021 JETIR October 2021, Volume 8, Issue 10                                                      www.jetir.org (ISSN-2349-5162) 

JETIR2110193 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b838 
 

 
Figure – Temperature distribution in filament  

 
Figure – wall shear stress in filament 

 
Figure – Pressure distribution in filament 

Simulation result of extruder model for 30 degree nozzle 

angle 

Table - Results obtained for extruder model in 30 degree 

nozzle angle 

Nozzle angle 30 degree 

Heat (W) 

Temperature 

(degrees), Nozzle 

angle 30 degree 

Wall shear 

stress, Nozzle 

angle 30 degree 

Pressure (Pa), 

Nozzle angle 30 

degree 

10 156.98 1.80E+04 5800 

20 263.58 1.10E+05 6800 

30 293.88 1.50E+05 7800 

40 326.44 1.90E+05 8900 

 

 

 

 

 

 

Figure - Comparison of temperature obtained for 30 degree 

nozzle angle extruder model with respect to different heat 

load. 

Simulations contour obtained for 30 degree nozzle angle: 

 
Figure– Temperature distribution in filament of 30 degree 

nozzle angle 

 
Figure– wall shear stress in filament of 30 degree nozzle 

angle 
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Figure– Pressure distribution in filament of 30 degree nozzle 

angle 

Overall comparison of temperature, pressure and wall 

shear stress for each nozzle angle and nozzle diameter. 

 

Figure  – overall comparison of temperature for each nozzle angle and diameter. 
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Figure  – overall comparison of pressure for each nozzle angle and diameter. 

 

Figure  – overall comparison of wall shear stress for each nozzle angle and diameter. 

 

CONCLUSION 

 The CFD (Computational fluid dynamic) 

model was developed on CREO 5.0 and 

analysis was done using the ANSYS software 

fluent 15.0. 

 Temperature distribution and wall shear stress 

is the fundamental parameter in the 

performance of 3d printer extruder. Pressure is 

found to be decreased in 60 degree nozzle 

angle configuration of 3d printer extruder 

model. 

 In the study, nozzle angle of 30, 45, 60 and 50 

degree (validation) with nozzle diameter of 0.1 

and 0.3mm are the key geometric parameter on 

the performance of 3d printer extruder model. 

It is also observed that 60 degree nozzle angle 

with nozzle diameter of 0.1mm exhibits 

minimum wall shear stress and pressure as 

compared to other optimized configuration. 
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 The flow ability of 0.3mm nozzle diameter of 

3d printer extruder is maximum, thus 

manufacturing with this configuration adopts 

the higher usage of material.   

 The simulations of CFD models of plate heat 

exchanger show a good relation with existing 

experimental results presented in the literature. 
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